Сумма НОК (1, n), НОК (2, n), НОК (3, n),…, НОК (n, n)

Опубликовано: 5 Января, 2022

Для целого числа n нужно найти сумму:

LCM(1, n) + LCM(2, n) + LCM(3, n) + … + LCM(n, n) 
where LCM(i, n) is the Least Common Multiple of i and n. 

Примеры:

Input:
Output: 10 
LCM(1, 3) + LCM(2, 3) + LCM(3, 3) = 3 + 6 + 3 = 12

Input:
Output: 55 
LCM(1, 5) + LCM(2, 5) + LCM(3, 5) + LCM(4, 5) + LCM(5, 5) = 55 

Рекомендуется: сначала попробуйте свой подход в {IDE}, прежде чем переходить к решению.

Наивный подход: НОК двух чисел a и b = (a * b) / gcd (a, b), где gcd (a, b) - наибольший общий делитель чисел a и b .

  • Вычислите значения индивидуального НОК для всех пар, начиная с (1, n) и заканчивая (n, n) .
  • Просуммируйте все результаты НОК из предыдущего шага.
  • В конце выведите сумму.

Ниже представлена реализация описанного выше подхода:

C ++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define ll long long int
// Function to calculate the required LCM sum
ll lcmSum( long long n)
{
ll sum = 0;
for ( long long int i = 1; i <= n; i++) {
// GCD of i and n
long long int gcd = __gcd(i, n);
// LCM of i and n ie (i * n) / gcd(i, n)
long long int lcm = (i * n) / gcd;
// Update sum
sum = sum + lcm;
}
sum; return
}
// Driver code
int main()
{
int n = 3;
cout << lcmSum(n);
return 0;
}

Джава

// Java implementation of the approach
import java.util.*;
class GFG
{
// return gcd of two numbers
static int gcd( int a, int b)
{
// Everything divides 0
if (a == 0 )
return b;
if (b == 0 )
return a;
// base case
if (a == b)
return a;
// a is greater
if (a > b)
return gcd(a - b, b);
return gcd(a, b - a);
}
// Function to calculate the required LCM sum
static int lcmSum( int n)
{
int sum = 0 ;
for ( int i = 1 ; i <= n; i++)
{
// GCD of i and n
int gcd = gcd(i, n);
// LCM of i and n ie (i * n) / gcd(i, n)
int lcm = (i * n) / gcd;
// Update sum
sum = sum + lcm;
}
sum; return
}
// Driver code
public static void main(String args[])
{
int n = 3 ;
System.out.println(lcmSum(n));
}
}
// This code is contributed by
// Surendra _Gangwar

Python3

# Python3 implementation of the approach
import math
# Function to calculate the required LCM sum
def lcmSum(n):
Sum = 0
for i in range ( 1 , n + 1 ):
# GCD of i and n
gcd = math.gcd(i, n)
# LCM of i and n ie (i * n) / gcd(i, n)
lcm = (i * n) / / gcd
# Update sum
Sum = Sum + lcm
return Sum
# Driver code
if __name__ = = "__main__" :
n = 3
print (lcmSum(n))
# This code is contributed by Rituraj Jain

C #

// C# implementation of the approach
class GFG
{
// return gcd of two numbers
static int gcd1( int a, int b)
{
// Everything divides 0
if (a == 0)
return b;
if (b == 0)
return a;
// base case
if (a == b)
return a;
// a is greater
if (a > b)
return gcd1(a - b, b);
return gcd1(a, b - a);
}
// Function to calculate the required LCM sum
static int lcmSum( int n)
{
int sum = 0;
for ( int i = 1; i <= n; i++)
{
// GCD of i and n
int gcd = gcd1(i, n);
// LCM of i and n ie (i * n) / gcd(i, n)
int lcm = (i * n) / gcd;
// Update sum
sum = sum + lcm;
}
sum; return
}
// Driver code
static void Main()
{
int n = 3;
System.Console.WriteLine(lcmSum(n));
}
}
// This code is contributed by chandan_jnu

PHP

<?php
// PHP implementation of the approach
function __gcd( $a , $b )
{
if ( $b == 0)
return $a ;
return __gcd( $b , $a % $b );
}
// Function to calculate the required LCM sum
function lcmSum( $n )
{
$sum = 0;
for ( $i = 1; $i <= $n ; $i ++)
{
// GCD of i and n
$gcd = __gcd( $i , $n );
// LCM of i and n ie (i * n) / gcd(i, n)
$lcm = ( $i * $n ) / $gcd ;
// Update sum
$sum = $sum + $lcm ;
}
return $sum ;
}
// Driver code
$n = 3;
echo lcmSum( $n );
// This code is contributed by chandan_jnu
?>

Javascript

<script>
// Javascript implementation of the approach
// return gcd of two numbers
function gcd(a, b)
{
// Everything divides 0
if (a == 0)
return b;
if (b == 0)
return a;
// base case
if (a == b)
return a;
// a is greater
if (a > b)
return gcd(a - b, b);
return gcd(a, b - a);
}
// Function to calculate the required LCM sum
function lcmSum(n)
{
var sum = 0;
for ( var i = 1; i <= n; i++)
{
// GCD of i and n
var _gcd = gcd(i, n);
// LCM of i and n ie (i * n) / gcd(i, n)
var lcm = (i * n) / _gcd;
// Update sum
sum = sum + lcm;
}
sum; return
}
// Driver code
var n = 3;
document.write(lcmSum(n));
// This code is contributed by Ankita saini
</script>
Выход:
 12

Эффективный подход: использование функции Эйлера Totient,
∑LCM (i, n) = ((∑ (d * ETF (d)) + 1) * n) / 2
где ETF (d) - функция Эйлера от d, а d принадлежит множеству делителей n .

Пример:

Let n be 5 then LCM(1, 5) + LCM(2, 5) + LCM(3, 5) + LCM(4, 5) + LCM(5, 5) 
= 5 + 10 + 15 + 20 + 5 
= 55
With Euler Totient Function: 
All divisors of 5 are {1, 5} 
Hence, ((1*ETF(1) + 5*ETF(5) + 1) * 5) / 2 = 55 

Ниже представлена реализация описанного выше подхода:

C ++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define n 1000002
#define ll long long int
ll phi[n + 2], ans[n + 2];
// Euler totient Function
void ETF()
{
for ( int i = 1; i <= n; i++) {
phi[i] = i;
}
for ( int i = 2; i <= n; i++) {
if (phi[i] == i) {
phi[i] = i - 1;
for ( int j = 2 * i; j <= n; j += i) {
phi[j] = (phi[j] * (i - 1)) / i;
}
}
}
}
// Function to return the required LCM sum
ll LcmSum( int m)
{
ETF();
for ( int i = 1; i <= n; i++) {
// Summation of d * ETF(d) where
// d belongs to set of divisors of n
for ( int j = i; j <= n; j += i) {
ans[j] += (i * phi[i]);
}
}
ll answer = ans[m];
answer = (answer + 1) * m;
answer = answer / 2;
return answer;
}
// Driver code
int main()
{
int m = 5;
cout << LcmSum(m);
return 0;
}

Джава

// Java implementation of the approach
class GFG
{
static int n = 1000002 ;
static int [] phi = new int [n + 2 ];
static int [] ans = new int [n + 2 ];
// Euler totient Function
static void ETF()
{
for ( int i = 1 ; i <= n; i++)
{
phi[i] = i;
}
for ( int i = 2 ; i <= n; i++)
{
if (phi[i] == i)
{
phi[i] = i - 1 ;
for ( int j = 2 * i; j <= n; j += i)
{
phi[j] = (phi[j] * (i - 1 )) / i;
}
}
}
}
// Function to return the required LCM sum
static int LcmSum( int m)
{
ETF();
for ( int i = 1 ; i <= n; i++)
{
// Summation of d * ETF(d) where
// d belongs to set of divisors of n
for ( int j = i; j <= n; j += i)
{
ans[j] += (i * phi[i]);
}
}
int answer = ans[m];
answer = (answer + 1 ) * m;
answer = answer / 2 ;
return answer;
}
// Driver code
public static void main (String[] args)
{
int m = 5 ;
System.out.println(LcmSum(m));
}
}
// This code is contributed by chandan_jnu

Python3

# Python3 implementation of the approach
n = 100002 ;
phi = [ 0 ] * (n + 2 );
ans = [ 0 ] * (n + 2 );
# Euler totient Function
def ETF():
for i in range ( 1 , n + 1 ):
phi[i] = i;
for i in range ( 2 , n + 1 ):
if (phi[i] = = i):
phi[i] = i - 1 ;
for j in range ( 2 * i, n + 1 , i):
phi[j] = (phi[j] * (i - 1 )) / / i;
# Function to return the required LCM sum
def LcmSum(m):
ETF();
for i in range ( 1 , n + 1 ):
# Summation of d * ETF(d) where
# d belongs to set of divisors of n
for j in range (i, n + 1 , i):
ans[j] + = (i * phi[i]);
answer = ans[m];
answer = (answer + 1 ) * m;
answer = answer / / 2 ;
return answer;
# Driver code
m = 5 ;
print (LcmSum(m));
# This code is contributed
# by chandan_jnu

C #

// C# implementation of the approach
using System;
class GFG
{
static int n = 1000002;
static int [] phi = new int [n + 2];
static int [] ans = new int [n + 2];
// Euler totient Function
static void ETF()
{
for ( int i = 1; i <= n; i++)
{
phi[i] = i;
}
for ( int i = 2; i <= n; i++)
{
if (phi[i] == i)
{
phi[i] = i - 1;
for ( int j = 2 * i; j <= n; j += i)
{
phi[j] = (phi[j] * (i - 1)) / i;
}
}
}
}
// Function to return the required LCM sum
static int LcmSum( int m)
{
ETF();
for ( int i = 1; i <= n; i++)
{
// Summation of d * ETF(d) where
// d belongs to set of divisors of n
for ( int j = i; j <= n; j += i)
{
ans[j] += (i * phi[i]);
}
}
int answer = ans[m];
answer = (answer + 1) * m;
answer = answer / 2;
return answer;
}
// Driver code
static void Main()
{
int m = 5;
Console.WriteLine(LcmSum(m));
}