Разница между десятичной и двоичной системами счисления

Опубликовано: 27 Января, 2023

В математике система, которая используется для представления чисел в различных формах, определяется как система счисления . Математическое значение, которое используется для подсчета, измерения и выполнения различных арифметических вычислений, называется числом. В зависимости от свойств числа подразделяются на различные типы, такие как натуральные числа, целые числа, дроби, рациональные и иррациональные числа и так далее. Точно так же у нас есть разные виды систем счисления, основанные на разных свойствах, такие как двоичная система счисления, восьмеричная система счисления, десятичная система счисления и шестнадцатеричная система счисления. Мы можем преобразовать число из любой системы счисления в любую из трех других систем счисления.

Десятичная система счисления

Система счисления, которая представляет число от 0 до 9 цифр, является десятичной системой счисления . Десятичная система счисления состоит из десяти цифр, т. е. 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9. Основание числа в этой системе равно 10. В десятичной системе счисления число выражается в терминах степеней 10, т. е. позиции последовательных цифр слева от десятичной точки представляют единицы, десятки, сотни, тысячи и т. д. Некоторые примеры чисел в десятичной системе счисления: (23) 10 , (123) 10 , (5547) 10 , (6531) 10 и так далее. В повседневной жизни мы чаще всего представляем числа в десятичной системе счисления.

Например, (123) 10 в степени 10 выражается как 1 × 10 2 + 2 × 10 1 + 3 × 10 0 . 1 в разряде сотен, 2 в разряде десятков и 3 в разряде единиц.

Двоичная система счисления

Система счисления, которая выражает число цифрами 0 и 1, называется двоичной системой счисления. Двоичная система имеет только две цифры, т. е. 0 и 1. Основание числа в этой системе равно 2. В двоичной системе счисления число выражается через степени двойки. Например, десятичное число 26 равно выражается как (11010) 2 в двоичной системе. Двоичные цифры 0 и 1 используются во всех компьютерных программах и языках, таких как C, C++, Java и т. д., для написания программы и кодирования любых цифровых данных.

Двоичное число (1011) 2 выражается в степени двойки как (1 × 2 3 ) + (0 × 2 2 ) + (1 × 2 1 ) + (1 × 2 0 ).

Десятичное число

Двоичный номер

1

01

2

10

3

11

4

100

5

101

6

110

7

111

8

1000

9

1001

10

1010

Преобразование двоичного в десятичное и наоборот

Двоичные числа можно преобразовать в десятичные числа, а десятичные числа можно преобразовать обратно в двоичные числа, используя следующие правила:

Двоичное в десятичное преобразование

Система счисления, которая выражает число цифрами от 0 до 1, является двоичной системой счисления, тогда как десятичная система счисления представляет число цифрами от 0 до 9. Теперь, чтобы преобразовать двоичное число в десятичное, умножьте каждую цифру двоичного числа на степень 2.

Если B = a n-1 …a 3 a 2 a 1 a 0 — двоичное число, состоящее из n цифр, то соответствующее десятичное число будет

D = (a n-1 × 2 n-1 ) +…+(a 3 × 2 3 ) + (a 2 × 2 2 ) + (a 1 × 2 1 ) + (a 0 × 2 0 ).

Пример: Преобразуйте (11001) 2 в десятичное число.

Решение:

The given binary number is (11001)2.

(11001)2 = (1 × 24) + (1 × 23) + (0 × 22) + (0 × 21) + (1 × 20)

= 16 + 8 + 0 + 0 + 1 = (25)10

Therefore, the binary number (11001)2 is expressed as (25)10.

Десятичное в двоичное преобразование

Чтобы преобразовать десятичное число в двоичное, непрерывно делите данное число на 2, пока не получите частное, равное 1. Обратите внимание, что мы должны записывать числа снизу вверх.

Пример: преобразовать (31) 10 в двоичное число.

Решение:

 

Therefore, (31)10 is expressed as (11111)2

Разница между двоичной и десятичной системами

Двоичная система счисления

Десятичная система счисления

Система счисления, которая выражает число цифрами 0 и 1, является двоичной системой счисления. Система счисления, которая представляет число от 0 до 9 цифр, является десятичной системой счисления.
Двоичная система имеет только две цифры, то есть 0 и 1. Десятичная система счисления состоит из десяти цифр, то есть 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9.
Основание числа в этой системе равно 2. Основание числа в этой системе равно 10.
В двоичной системе счисления число выражается в степени двойки. В десятичной системе счисления число выражается в степени 10.
Десятичное число 26 выражается как (11010) 2 в двоичной системе. Двоичное число (11010) 2 равно 26 в десятичной системе счисления.

Решенный пример преобразования двоичного числа в десятичное и наоборот

Пример 1: Преобразование (65) 10 в двоичное число.

Решение:

 

Therefore, (65)10 is expressed as (1000001)2

Пример 2. Преобразование (10101) 2 в десятичное число.

Решение:

The given binary number is (10101)2.

(10101)2 = (1 × 24) + (0 × 23) + (1 × 22) + (0 × 21) + (1 × 20)

= 16 + 0 + 4 + 0 + 1 = (21)10

Therefore, the binary number (10101)2 is expressed as (21)10.

Пример 3: Преобразование (111001) 2 в десятичное число.

Решение:

The given binary number is (111001)2.

(10101)2 = (1 × 25) + (1 × 24) + (1 × 23) + (0 × 22) + (0 × 21) + (1 × 20)

= 32 + 16 + 8 + 0 + 0 + 1 = (57)10

Therefore, the binary number (111001)2 is expressed as (57)10.

Пример 4: Преобразование (46) 10 в двоичное число.

Решение:

 

Therefore, (46)10 is expressed as (101110)2.

Часто задаваемые вопросы о десятичной и двоичной системе счисления

Вопрос 1: Что такое двоичная и десятичная системы счисления?

Отвечать:

The number system that expresses a number in terms of 0 and 1 digits is a binary number system, whereas a decimal number system represents a number in terms of 0 to 9 digits.

Вопрос 2: Как вы можете преобразовать двоичное число в десятичное число?

Отвечать:

To convert a binary number into a decimal number, multiply each digit of the binary number by the power of 2. If B = an-1…a3a2a1a0 is a binary number that has n digits, then the respective decimal number will be

D = (an-1 × 2n-1) +…+(a3 × 23) + (a2 × 22) + (a1 × 21) + (a0 × 20).

Вопрос 3: Как преобразовать десятичное число в двоичное?

Отвечать:

To convert a decimal number into a binary number, divide the given number by 2 continuously till we get the quotient as 1. Note that we have to write the numbers from downwards to upwards.

Вопрос 4: В чем разница между двоичной и десятичной системами счисления?

Отвечать:

The number system that expresses a number in terms of 0 and 1 digits is a binary number system, whereas a decimal number system represents a number in terms of 0 to 9 digits. In a binary number system, a number is expressed in terms of powers of 2, whereas in a decimal number system a number is expressed in terms of powers of 10.

Вопрос 5: Какое десятичное число эквивалентно двоичному числу 11010?

Отвечать:

11010 = (1 × 24) + (1 × 23) + (0 × 22) + (1 × 21) + (0 × 20)

= 16 + 8 + 0 + 2 + 0 = 26

So, (11010)2 is 26 in the decimal number system.