Внешний вид и поведение полярных осей в MATLAB

Опубликовано: 22 Февраля, 2023

Полярные оси - это оси координат, где две оси координат представляют собой ось r для величины и ось тета для углов. В MATLAB есть много функций для изменения свойств этих полярных осей, которые мы увидим в этой статье. В этой статье мы увидим, как изменить следующие свойства полярных осей в MATLAB:

  1. Пределы осей
  2. Оси тикают
  3. Метки осей
  4. Угол деления оси R

Давайте рассмотрим каждый из них на примере каждого.

Пределы осей:

MATLAB предоставляет нам возможность изменять пределы оси r и тета с помощью функций rlim() и thetalim().

Синтаксис:

rlim(<limits of r-axis>)

thetalim(<limits of theta-axis>)

Мы можем передать определенный диапазон для пределов оси r и тета-оси, и вышеуказанные функции изменят видимый диапазон полярных осей. Мы построим кривую синусоиды в полярных осях с тета в диапазоне от 0 до 270 градусов и r в диапазоне от 0 до 1,5.

Пример 1:

Matlab




% MATLAB code for
% Defining polar axes
ax=polaraxes;
 
% Defining x data
r=linspace(-pi,pi);   
 
% Plotting sin(r) in axes ax
plot(ax,r,sin(r))
 
% Setting r-limits to 0->1.5
rlim([0 1.5])   
 
%Setting theta-limits to 0->270 degrees
thetalim([0 270])

Выход:

Тики осей:

Мы можем изменить расположение делений на осях r и тета, используя следующие функции.

Синтаксис:

rticks(<vector with tick values>)

thetaticks(<vectors with tick values in degrees>)

См. следующий пример для понимания вышеуказанных функций.

Пример 2:

Matlab




% MATLAB code for axes ticks
ax=polaraxes;
r=linspace(-pi,pi);
plot(ax,r,sin(r))
 
% Giving tick values
rticks([0 .23 .5 1 ])
thetaticks([0 23 31 180 203 211])

Выход:

Оси отметьте Ярлыки:

Точно так же, как мы изменили значения тиков в приведенном выше примере, мы также можем изменить метки, присвоенные этим тикам, используя следующие функции.

Синтаксис:

rticklabels(<labels>)

thetaticklabels(<labels>)

Теперь мы построим тригонометрическое тождество sin 2 (r) + cos 2 (r) = 1 в полярных системах отсчета только с 4 направлениями на тета-оси.

Пример 3:

Matlab




% MATLAB code for Axes tick Labels
ax=polaraxes;
r=linspace(-pi,pi);
 
% Plotting the identity
plot(ax,r,sin(r).^2+cos(r).^2)
rticks([0 .23 .5 1 ])
 
% Setting r tick labels
rticklabels(["a=0","b=.23","c=.5","d=1"])
thetaticks([0 90 180 270])
 
% Setting theta tick labels
thetaticklabels(["East","North","West","South"])

Выход:

Углы деления оси R:

Мы можем изменить ориентацию меток r-tick, в которых они отображаются. Для этого есть простая функция.

Синтаксис:

rtickangle(<angle of rotation>)

Мы можем использовать приведенную выше функцию без аргумента для запроса текущего угла r-тика. Получение текущего угла поворота. Рассмотрим следующий сюжет.

Мы можем запросить его rtickangle, как показано ниже.

Пример 4:

Matlab




% MATLAB code
ax=polaraxes;
r=linspace(-pi,pi);
plot(ax,r,sin(r).^2+cos(r).^2)
 
% Getting the rtickvalue
ang=rtickangle

Выход:

Как мы видим, угол r-тиков по умолчанию равен 0 градусов.

Пример 5:

Matlab




% Changing the r-tick angle in MATLAB
ax=polaraxes;
r=linspace(-pi,pi);
plot(ax,r,sin(r).^2+cos(r).^2)
 
% Rotating rtick labels to 310 degree
rtickangle(ax,310)

Выход: