Решения NCERT класса 8 - Глава 8 Сравнение количеств - Упражнение 8.3
Вопрос 1. Рассчитайте сумму и сложные проценты на
(i) 10 800 рупий за 3 года по ставке 12
% годовых, начисляемых ежегодно.
(ii) 18 000 рупий на двоих
лет под 10% годовых, начисленных ежегодно.
(iii) 62 500 рупий за 1 человека
лет под 8% годовых с начислением раз в полгода.
(iv) 8000 рупий на 1 год под 9% годовых с начислением сложных процентов каждые полгода.
(v) 10 000 рупий на 1 год под 8% годовых с начислением сложных процентов каждые полгода.
Решение:
(i) Given values are,
P = Rs 10,800
R = 12
% per annum =
%
T = 3 Years
As it is compounded annually then, n = 3 times.
We have,
A = P (1 +
)n
A = 10,800 (1+
)3
A = 10,800 (1+
)3
A = 10,800 (
)3
A = Rs 15,377.34
CI = A – P
CI = 15,377.34 – 10,800
CI = Rs 4,577.34
Hence, the amount = Rs 15,377.34 and
Compound interest = Rs 4,577.34
(ii) Given values are,
P = Rs 18,000
R = 10 % per annum
T = 2
Years
As it is compounded annually then, n = 2
times.
We have,
A = P (1 +
)n
A = 18,000 (1+
)2½
What we will do here is Firstly we know 2
Years is 2 years and 6 months which can be calculated by first calculating the amount to 2 years using CI formula and then calculating the simple interest by using SI formula.
The amount for 2 years has to be calculated :
A = 18,000 (1+
)2
A = 18,000 (
)2
A = Rs 21,780
CI = A – P
CI = 21,780 – 18,000
CI = Rs 3,780
Now, The amount for
year has to be calculated:
New P is equal to the amount after 2 Years. Hence,
P = Rs 21,780
R = 10 % per annum
T =
year
SI =
SI =
SI =
SI = Rs 1,089
Hence, the Total amount = A + SI
= 21,780 + 1,809
= Rs 22,869
Total compound interest = CI + SI
= 3,780 + 1,809
= Rs 4,869
(iii) Given values are,
P = Rs 62,500
R = 8 % per annum hence 4% Half Yearly
T = 1
Years
As it is compounded Half yearly then, n = 3 times. (1
Years contains 3 half years)
We have,
A = P (1 +
)n
A = 62,500 (1+
)3
A = 62,500 (1+
)3
A = 62,500 (
)3
A = Rs 70,304
CI = A – P
CI = 70,304 – 62,500
CI = Rs 7,804
Hence, the amount = Rs 70,304 and
Compound interest = Rs 7,804
(iv) Given values are,
P = Rs 8,000
R = 9 % per annum hence,
% Half Yearly
T = 1 Year
As it is compounded Half yearly then, n = 2 times. (1 Year contains 2 half years)
We have,
A = P (1 +
)n
A = 8,000 (1+
)2
A = 8,000 (1+
)2
A = 8,000 (
)2
A = Rs 8,736.20
CI = A – P
CI = 8,736.20 – 8,000
CI = Rs 736.20
Hence, the amount = Rs 8,736.20 and
Compound interest = Rs 736.20
(v) Given values are,
P = Rs 10,000
R = 8 % per annum hence, 4% Half Yearly
T = 1 Year
As it is compounded Half yearly then, n = 2 times. (1 Year contains 2 half years)
We have,
A = P (1+
)n
A = 10,000 (1+ (
))2
A =10,000 (1+ (
))2
A = 10,000 (
)2
A = Rs 10,816
CI = A – P
CI = 10,816- 10,000
CI = Rs 816
Hence, the amount = Rs 10,816 and
Compound interest = Rs 816
Вопрос 2. Камала заняла 26 400 рупий в банке, чтобы купить скутер, со ставкой 15% годовых, начисленной ежегодно. Какую сумму она заплатит по истечении 2 лет и 4 месяцев, чтобы погасить ссуду?
Решение:
Here, Given values are,
P = Rs 26,400
R = 15 % per annum
T = 2 Years and 4 months, which is 2
years
As it is compounded annually then, n = 2
times
We have,
A = P (1 +
)n
A = 26,400 (1 + (
)2(1/3)
What we will do here is Firstly 2 years and 4 months which can be calculated by first calculating the amount to 2 years using CI formula and then calculating the simple interest by using SI formula.
The amount for 2 years has to be calculated:
A = 26,400 (1+ (
)2
A = 26,400 (1+ (
)2
A = 26,400 (
)2
A = Rs 34,914
Now, The amount for (1/3) year (4 months) has to be calculated :
New P is equal to the amount after 2 Years. Hence,
P = Rs 34,914
R = 15 % per annum
T =
year
SI =
SI =
SI =
SI = 1,745.70
Hence, the Total amount = A + SI
= 34,914 + 1,745.70
= Rs 36,659.70
Hence, the amount to be paid by Kamla = ₹ 36,659.70
Вопрос 3. Фабина берет 12 500 рупий под 12% годовых на 3 года под простые проценты, а Радха заимствует такую же сумму на тот же период под 10% годовых, начисленных ежегодно. Кто платит больше процентов и на сколько?
Решение:
Let’s see each case
Fabina Case: at simple interest
P = 12,500
R = 12% per annum
T = 3 Years
SI =
SI =
SI = Rs 4,500
Radha Case: at compound interest
P = 12,500
R = 10% per annum
T = 3 Years
As it is compounded annually then, n = 3 times
We have,
A = P (1 +
)n
A = 12,500 (1 + (
))3
A =12,500 (1 +
)3
A = 12,500 (
)3
A = Rs 16,637.5
CI = A – P
CI = 16,637.5 – 12,500
CI = 4,137.5
Clearly we can see that Fabina paid more interest, and she paid
4,500 – 4,137.5 = Rs 362.5 more than Radha
Вопрос 4. Я взял в долг 12 000 рупий у Джамшеда под простую процентную ставку 6% годовых сроком на 2 года. Если бы я взял эту сумму в долг под 6% годовых, какую дополнительную сумму мне пришлось бы заплатить?
Решение:
Lets see each case First
At simple interest
P = 12,000
R = 6% per annum
T = 2 Years
SI =
SI =
SI = Rs 1,440
At compound interest
P = 12,000
R = 6% per annum
T = 2 Years
As it is compounded annually then, n = 2 times
We have,
A = P (1 +
)n
A = 12,000 (1+ (
))2
A =12,000 (1+ (
))2
A = 12,000 (
)2
A = Rs 13,483.2
CI = A – P
CI = 13,483.2 – 12,000
CI = 1,483.2
Clearly we can see that,
1,483.2 – 1,440 = Rs 43.2
Hence, the extra amount to be paid = ₹ 43.20
Вопрос 5. Васудеван инвестировал 60 000 рупий под 12% годовых, начисляемых раз в полгода. Какую сумму он получит
(а) через 6 месяцев?
(б) через 1 год?
Решение:
Let’s see each case
(a)
P = 60,000
R = 12% per annum (6% Half yearly)
T = 6 Months
As it is compounded Half Yearly then, n = 1 times (as 6 months is 1 half year)
We have,
A = P (1 +
)n
A =60,000 (1+ (
))1
A =60,000 (1+ (
))1
A = 60,000 (
)1
A = Rs 63,600
He would get Rs 63,600 after 6 Months.
(b)
P = 60,000
R = 12% per annum (6% Half yearly)
T = 1 Year
As it is compounded Half Yearly then, n = 2 times (as 1 Year is 2 half year)
We have,
A = P (1 +
)n
A = 60,000 (1+ (
))2
A = 60,000 (1+ (
))2
A = 60000 (
)2
A = Rs 67,416
He would get Rs 67,416 after 1 Year.
Вопрос 6. Ариф взял в банке ссуду в размере 80 000 рупий. Если процентная ставка составляет 10% годовых, найдите разницу в суммах, которые он будет платить через 1 год.
лет, если интерес
(а) ежегодно.
(б) начисляются раз в полгода.
Решение:
Let’s see each case
(a) Compounded Annually
P = 80,000
R = 10% per annum
T = 1
Year
As it is compounded annually then, n = 1
times
We have,
A = P (1 +
)n
A = 80,000 (1 + (
)1½
What we will do here is Firstly we know 1
Years is 1 year and 6 months which can be calculated by first calculating the amount to 1 year using CI formula and then calculating the simple interest by using SI formula.
The amount for 1 years has to be calculated :
A = 80,000 (1+ (
))1
A = 80,000 (1+ (
)1
A = 80,000 (
)1
A = Rs 88,000
Now, The amount for
Year (6 months) has to be calculated :
New P is equal to the amount after 1 Year. Hence,
P = Rs 88,000
R = 10 % per annum
T =
Year
SI =
SI =
SI =
SI = 4,400
Hence, the Total amount = A + SI
= 88,000 + 4,400
= Rs 92,400
(b) Compounded Half-yearly
P = 80,000
R = 10% per annum (5 % Half Yearly)
T = 1
Year
As it is compounded annually then, n = 3 times (as 1
Year is 3 half year)
We have,
A = P (1 +
)n
A = 80,000 (1+ (
)3
A = 80,000 (1+ (
)3
A = 80,000 (
)3
A = Rs 92,610
Hence, the Total amount = Rs 92,610
Вопрос 7. Мария инвестировала 8 000 рупий в бизнес. Ей будут выплачиваться проценты в размере 5% годовых, начисляемые ежегодно. Находить
(а) Сумма, начисленная на ее имя в конце второго года.
(b) Проценты за 3-й год.
Решение:
Let’s see each case
Here,
P = 8,000
R = 5% Per annum
(a) The amount credited against Maria’s name at the end of the second year.
T = 2 Year
As it is compounded annually then, n = 2 times
We have,
A = P (1 +
)n
A = 8,000 (1+ (
))2
A = 8,000 (1+ (
))2
A = 8,000 (
)2
A = Rs 8,820
Hence, the amount credited against Maria’s name at the end of the second year = Rs 8,820
(b) The interest for the 3rd year.
T = 3 Year
As it is compounded annually then, n = 3 times
We have,
A = P (1+
)n
A = 8,000 (1+ (
))3
A = 8,000 (1+ (
))3
A = 8,000 (
)3
A = Rs 9,261
The interest for the 3rd year = Amount after 3 years – Amount after 2 Years
= 9,261 – 8,820
= Rs 441
Another Solution for (b)
As we can calculate interest of 3rd year by having 2nd Year Amount as P.
P = 8,820
R = 5% per annum
T = 1 Year (2nd to 3rd year)
SI =
SI =
SI = Rs 441
The interest for the 3rd year = Rs 441
Вопрос 8. Найдите сумму и сложные проценты на 10 000 рупий за 1
лет под 10% годовых, начисляются каждые полгода. Будет ли этот процент больше, чем тот, который он получил бы, если бы он начислялся ежегодно?
Решение:
Let’s see each cases
Compounded Annually
P = 10,000
R = 10% per annum
T = 1
Year
As it is compounded annually then, n = 1
times
We have,
A = P (1 +
)n
A = 10,000 (1 + (
)1½
What we will do here is Firstly we know 1½ Years is 1 year and 6 months which can be calculated by first calculating the amount to 1 year using CI formula and then calculating the simple interest by using SI formula.
The amount for 1 year has to be calculated:
A = 10,000 (1 +
)1
A = 10,000 (1+
)1
A = 10,000 (
)1
A = Rs 11,000
CI = A – P
CI = 11,000-10,000
CI = 1,000
Now, The amount for
Year (6 months) has to be calculated :
New P is equal to the amount after 1 Year. Hence,
P = Rs 11,000
R = 10 % per annum
T =
Year
SI =
SI =
SI =
SI = 550
Hence, the Total Interest (compounded annually)= CI + SI
= 1,000 + 550
= Rs 1,550
Compounded Half-yearly
P = 10,000
R = 10% per annum (5 % Half Yearly)
T = 1
Year
As it is compounded annually then, n = 3 times (as 1
Year is 3 half year)
We have,
A = P (1 +
)n
A = 10,000 (1 + (
)3
A = 10,000 (1+
)3
A = 10,000 (
)3
A = Rs 11,576.25
CI = A – P
CI = 11,576.25 – 10,000
CI = 1,576.25
Hence, the Total Interest (compounded Half Yearly) = Rs 11576.25
Difference between the two interests = 1,576.25 – 1,550 = Rs 26.25
Hence, the interest will be Rs 26.25 more when compounded half-yearly than the interest when compounded annually.
Вопрос 9. Найдите сумму, которую Рам получит по 4096 рупий, если он отдал ее на 18 месяцев по 12.
% годовых, проценты начисляются раз в полгода .
Решение:
Let’s see this case
P = Rs 4,096
R = 12
% per annum (
% Half yearly)
T = 18 Months = 1
Year
As it is compounded Half yearly then, n = 3 Times
We have,
A = P (1 +
)n
A = 4,096 (1+ (
)3
A = 4,096 (1+
)3
A = 4,096 (1+ (
)3
A = 4,096 (
)3
A = Rs 4,913
Ram will get the amount = Rs 4,913
Вопрос 10. Население населенного пункта увеличилось до 54 000 в 2003 году со скоростью 5% в год.
(а) найти численность населения в 2001 году.
(б) каково было бы его население в 2005 г.?
Решение:
Here,
P = 54,000 (in 2003)
R = 5% per annum
(a) Population in 2001
T = 2 Years (back)
n = 2
Population in 2003 = Population in 2001 (1 +
)n
54,000 = P1 (1+(
))2
54,000 = P1 (
)2
54,000 = P1 (
)
P1 = 54,000 (
)
P1 = 48,979.59
P1 = 48,980 (approx.).
Population in 2001 was 48,980 (approx.).
(b) Population in 2005
T = 2 Years
n = 2
We have,
A = P (1 +
)n
A = 54,000 (1+
)2
A = 54,000 (1+ (
)2
A = 54,000 (
)2
A = 59,535
Population in 2005 will be 59,535
Вопрос 11. В лаборатории количество бактерий в одном эксперименте увеличивалось со скоростью 2,5% в час. Найдите бактерии через 2 часа, если изначально было 5,06 000.
Решение:
Here,
P = 5,06,000
R = 2.5% per hour
T = 2 hours
We have,
A = P (1 +
)n
A = 5,06,000 (1+
)2
A = 5,06,000 (1+
)2
A = 5,06,000 (1+
)2
A = 5,06,000 (
)2
A = 5,31,616.25
A = 5,31,616 (approx.)
Bacteria at the end of 2 hours = 5,31,616 (approx.)
Вопрос 12. Самокат был куплен за 42 000 рупий. Его стоимость обесценивалась из расчета 8% годовых. Найдите его стоимость через год.
Решение:
Here,
P = 42,000
R = 8% per annum (depreciated)
T = 1 Year
We have,
A = P (1 +
)n
A = 42,000 (1-
)1 (negative sign because the price is reduced)
A = 42,000 (1- (
)1
A = 42,000 (
)1
A = Rs 38,640
The value of scooter after one year will be = Rs 38,640
% per annum =
%
)n
)3
)3
)3
)2½
)2
)2


)3
)3
)3
% Half Yearly
)2
)2
)2
years
)2(1/3)
)2
)2





))2
))2
)2
)1


)3
)3
)3


% Half yearly)
)3
)3
)3
)3
)
)2
)2
)2
)2
)1 (negative sign because the price is reduced)
)1
)1