Класс 12 Решения Р. Д. Шармы - Глава 28 Прямая линия в космосе - Упражнение 28.4

Опубликовано: 12 Апреля, 2022

Вопрос 1. Найдите перпендикулярное расстояние точки (3, -1, 11) от прямой

Решение:

Let the foot of the perpendicular drawn from P (3, -1, 11) to the line  is Q, so we have to find length of PQ is general point on the line 

Coordinate of Q, direction ratios of the given line = 2,-3,4. Since PQ is the perpendicular to the given line interface. 

So, the coordinates of Q are:

Distance between P and Q is given as:



So, the required distance is units

Вопрос 2. Найдите перпендикулярное расстояние точки (1,0,0) от прямой. . Также найдите координаты основания перпендикуляра и уравнение перпендикуляра.

Решение:

Let us consider the foot of the perpendicular drawn from P (1,0,0) to the line is Q. So let us find the length of PQ i.e. 

Coordinate of Q

The direction ratios of the given line:  

So the Coordinates of Q are as follows:

Distance between P and Q is given by:

PQ = 

PQ = 

PQ = 

Hence, the foot of the perpendicular = (3,-4,-2);

Length of the perpendicular = units.

Вопрос 3. Найдите основание перпендикуляра, проведенного из точки A (1,0,3) к стыку точек B (4,7,1) и C (3,5,3).

Решение:

Let us consider, the foot of the perpendicular drawn from A(1,0,3) to the line joining

Points B(4,7,1) and C(3,5,3) be D. The equation of the line passing through 

points B(4,7,1) and C(3,5,3) is 

Let 

So, the direction ratio of AD is 

Line AD is the perepndicular to BC so, 

Hence, coordinates of D are: 

Вопрос 4. A (1,0,4), B (0, -11,3), C (2, -3,1) - три точки, а D - основание перпендикуляра из A на BC. Найдите координаты D.

Решение:

Given: D is the perpendicular from A(1,0,4) on BC. So,

Equation of line passing through BC is:

Coordinates of D = ( )

Direction ratios of AD is 

Line AD is perpendicular to BS so, 

So, coordinates of D are = 

=

Вопрос 5. Найдите основание перпендикуляра от точки (2,3,4) до прямой. . Также найдите перпендикулярное расстояние от данной точки до линии.

Решение:

Let us consider that The foot of the perpendicular drawn from P(2,3,4) to the line

is .

Equation of the line is 

Let 

Coordinates of Q

So, PQ is perpendicular to the given line,  

Coordinates of Q

Distance between P and Q is given by: PQ = 

Hence, perpendicular distance from (2,3,4) to the given line is units.

Вопрос 6. Найдите уравнение перпендикуляра, проведенного из точки P (2,4, -1) к прямой. . Также запишите координаты подошвы перпендикуляра из P.

Решение:

Let  be the foot of thr perpendicular drawn from P(2,4,-1) to the line

Given line is 

Coordinate of Q (General point on the line) = 

Direction ratios of PQ are: 

As line PQ is perpendicular to the given line, so: 

Therefore, coordinates of foot of perpendicular = {-4, 1, -3}

So equation of the perpendicular PQ is : 

Вопрос 7. Найдите длину перпендикуляра, проведенного из точки (5,4, -1) к прямой.

Решение:

Let the foot of the perpendicular drawn from P(5,4,-1) to the given line is Q, so given equation of line is:

Equating the coefficients of 

Coordinate of Q

Direction ratios of line PQ are: 

As line PQ is perpendicular to the given line, so: 

Coordinate of Q = {  }

Length of perpendicular = PQ = 

  PQ =  

Вопрос 8. Найдите основание перпендикуляра, проведенного из точки. к линии . Также найдите длину перпендикуляра.

Решение:

Let position vector of foot of perpendicular drawn from p on  be Q . So, Q is on the line 

So, position vector of Q

is the position vector of Q – position vecor of p = 

Here, PQ vector is perpendicular to the given line. So,

 

Position vector of Q = {}

Foot of the perpendicular

= Position vector of Q – Position vector of P

 =  units

Вопрос 9. Найдите уравнение перпендикуляра drwan от точки P (-1,3,2) до прямой . Также найдите координаты основания перпендикуляра от P.

Решение:

Let Q be the perpendicular drawn from P {} on the 

vector 

Let the position vector of Q be : 

                                                      : 

= Position Vector of Q – Position Vector of P = 

As PQ vector is perpendicular to the given line, 

Position Vector of Q is

Coordinates of foot of the perpendicular: 

Equation of PQ is: 

Вопрос 10. Найдите основание перпендикуляра из (0,2,7) на прямой.

Решение:

Let the foot of the perpendicular drawn from (0,2,7) to the line   be Q. 

Given equation of the line is 

Coordinate of Q = {

Direction Ratios of PQ are  

Since, PQ is perpendicular to the given line, so 

Foot of the perpendicular = {}

Вопрос 11. Найдите основание перпендикуляра от (1,2, -3) до прямой.

Решение:

Let the foot of perpendicular from P (1,2,-3) to the line   be Q.

Given the equation of line is 

Coordinates of Q are {}

Direction Ratios of PQ are:   =

Let PQ be the perpendicular to th egiven line, so 

Coordinate of the perpendicular: 

Вопрос 12. Найдите уравнение прямой, проходящей через точки A (0,6, -9) и B (-3, 6, 3). Если D - основание перпендикуляра, проведенного из точки C (7,4, -1) на прямой AB, то найдите координаты точки D и уравнение прямой CD.

Решение:

Equation of line AB is  

Coordinate of point D = {}

Direction ratios of CD

As line CD is perpendicular to the line AB, so  

Coordinate of D = {}

= {}

= (-1,2,-5)

Equation of CD is  

Вопрос 13. Найдите расстояние точки (2,4, -1) от линии.

Решение:

Let P = (2,4,-1)

In order to find the distance we need to find a point Q on the line. We see that line is passing through 

the point Q(-5,-3,6). So, let’s take this point as the required point. 

The line is also parallel to the vector 

Now,  = 

Therefore, 

Вопрос 14. Найдите координаты основания перпендикуляра, проведенного из точки A (1,8,4) к прямой, соединяющей точки B (0, -1,3) и C (2, -3, -1).

Решение:

Let L be the foot of the perpendicular drawn from A(1,8,4) on the line joining the points B(0,-1,3) and C(2,-3,-1). 

Equation of the line passing through the points B and C is given by 

Let position vector of L be, 

Then,  = Position vector of L – Position vector of A

Since, AL vector is perpendicular to the given line

which is parallel to 

Therefore, 

Putting value of lambda in Equation 1, we get:

So, coordinates of foot of the perpendicular are