Произведение длин всех циклов в неориентированном графе

Опубликовано: 24 Января, 2022

Дан неориентированный и невзвешенный граф. Задача - найти произведение длин всех образующихся в нем циклов.

Пример 1:

The above graph has two cycles of length 4 and 3, the product of cycle lengths is 12.

Пример 2:

The above graph has two cycles of length 4 and 3, the product of cycle lengths is 12.

Рекомендуется: сначала попробуйте свой подход в {IDE}, прежде чем переходить к решению.

Подход: используя метод раскраски графа, пометьте все вершины различных циклов уникальными номерами. После завершения обхода графа поместите все похожие отмеченные числа в список смежности и распечатайте список смежности соответственно. Ниже приводится алгоритм:

  • Вставьте края в список смежности.
  • Вызовите функцию DFS, которая использует метод раскраски для отметки вершины.
  • Всякий раз, когда есть частично посещенная вершина, возвращайтесь, пока не будет достигнута текущая вершина, и пометьте все их номерами цикла. Как только все вершины будут отмечены, увеличьте номер цикла.
  • После завершения Dfs выполните итерацию для ребер и переместите те же отмеченные номера ребер в другой список смежности.
  • Итерировать в другом списке смежности и вести подсчет количества вершин в цикле, используя номера карты и цикла.
  • Итерируйте для номеров циклов и умножайте длины, чтобы получить конечный продукт, который и будет ответом.

Below is the implementation of the above approach:

C++

// C++ program to find the
// product of lengths of cycle
#include <bits/stdc++.h>
using namespace std;
const int N = 100000;
  
// variables to be used
// in both functions
vector<int> graph[N];
  
// Function to mark the vertex with
// different colors for different cycles
void dfs_cycle(int u, int p, int color[],
            int mark[], int par[], int& cyclenumber)
{
  
    // already (completely) visited vertex.
    if (color[u] == 2) {
        return;
    }
  
    // seen vertex, but was not completely 
    // visited -> cycle detected.
    // backtrack based on parents to find
    // the complete cycle.
    if (color[u] == 1) {
  
        cyclenumber++;
        int cur = p;
        mark[cur] = cyclenumber;
  
        // backtrack the vertex which are
        // in the current cycle thats found
        while (cur != u) {
            cur = par[cur];
            mark[cur] = cyclenumber;
        }
        return;
    }
    par[u] = p;
  
    // partially visited.
    color[u] = 1;
  
    // simple dfs on graph
    for (int v : graph[u]) {
  
        // if it has not been visited previously
        if (v == par[u]) {
            continue;
        }
        dfs_cycle(v, u, color, mark, par, cyclenumber);
    }
  
    // completely visited.
    color[u] = 2;
}
  
// add the edges to the graph
void addEdge(int u, int v)
{
    graph[u].push_back(v);
    graph[v].push_back(u);
}
  
// Function to print the cycles
int productLength(int edges, int mark[], int& cyclenumber)
{
    unordered_map<int, int> mp;
  
    // push the edges that into the
    // cycle adjacency list
    for (int i = 1; i <= edges; i++) {
        if (mark[i] != 0)
            mp[mark[i]]++;
    }
    int cnt = 1;
  
    // prodcut all the length of cycles
    for (int i = 1; i <= cyclenumber; i++) {
        cnt = cnt * mp[i];
    }
    if (cyclenumber == 0)
        cnt = 0;
  
    return cnt;
}
  
// Driver Code
int main()
{
  
    // add edges
    addEdge(1, 2);
    addEdge(2, 3);
    addEdge(3, 4);
    addEdge(4, 6);
    addEdge(4, 7);
    addEdge(5, 6);
    addEdge(3, 5);
    addEdge(7, 8);
    addEdge(6, 10);
    addEdge(5, 9);
    addEdge(10, 11);
    addEdge(11, 12);
    addEdge(11, 13);
    addEdge(12, 13);
  
    // arrays required to color the
    // graph, store the parent of node
    int color[N];
    int par[N];
  
    // mark with unique numbers
    int mark[N];
  
    // store the numbers of cycle
    int cyclenumber = 0;
    int edges = 13;
  
    // call DFS to mark the cycles
    dfs_cycle(1, 0, color, mark, par, cyclenumber);
  
    // function to print the cycles
    cout << productLength(edges, mark, cyclenumber);
  
    return 0;
}

Java

// Java program to find the 
// product of lengths of cycle
import java.io.*;
import java.util.*;
  
class GFG 
{
    static int N = 100000;
    static int cyclenumber;
  
    // variables to be used
    // in both functions
    //@SuppressWarnings("unchecked")
    static Vector<Integer>[] graph = new Vector[N];
  
    // This static block is used to initialize 
    // array of Vector, otherwise it will throw
    // NullPointerException
    static 
    {
        for (int i = 0; i < N; i++)
            graph[i] = new Vector<>();
    }
  
    // Function to mark the vertex with
    // different colors for different cycles
    static void dfs_cycle(int u, int p, int[] color, 
                          int[] mark, int[] par) 
    {
  
        // already (completely) visited vertex.
        if (color[u] == 2)
            return;
  
        // seen vertex, but was not completely
        // visited -> cycle detected.
        // backtrack based on parents to find
        // the complete cycle.
        if (color[u] == 1
        {
            cyclenumber++;
            int cur = p;
            mark[cur] = cyclenumber;
  
            // backtrack the vertex which are
            // in the current cycle thats found
            while (cur != u)
            {
                cur = par[cur];
                mark[cur] = cyclenumber;
            }
            return;
        }
        par[u] = p;
  
        // partially visited.
        color[u] = 1;
  
        // simple dfs on graph
        for (int v : graph[u]) 
        {
  
            // if it has not been visited previously
            if (v == par[u])
            {
                continue;
            }
            dfs_cycle(v, u, color, mark, par);
        }
  
        // completely visited.
        color[u] = 2;
    }
  
    // add the edges to the graph
    static void addEdge(int u, int v)
    {
        graph[u].add(v);
        graph[v].add(u);
    }
  
    // Function to print the cycles
    static int productLength(int edges, int[] mark) 
    {
        HashMap<Integer, 
                Integer> mp = new HashMap<>();
  
        // push the edges that into the
        // cycle adjacency list
        for (int i = 1; i <= edges; i++)
        {
            if (mark[i] != 0)
            {
                mp.put(mark[i], mp.get(mark[i]) == null
                                1 : mp.get(mark[i]) + 1);
            }
        }
        int cnt = 1;
  
        // prodcut all the length of cycles
        for (int i = 1; i <= cyclenumber; i++) 
        {
            cnt = cnt * mp.get(i);
        }
        if (cyclenumber == 0)
            cnt = 0;
  
        return cnt;
    }
  
    // Driver Code
    public static void main(String[] args) throws IOException 
    {
  
        // add edges
        addEdge(1, 2);
        addEdge(2, 3);
        addEdge(3, 4);
        addEdge(4, 6);
        addEdge(4, 7);
        addEdge(5, 6);
        addEdge(3, 5);
        addEdge(7, 8);
        addEdge(6, 10);
        addEdge(5, 9);
        addEdge(10, 11);
        addEdge(11, 12);
        addEdge(11, 13);
        addEdge(12, 13);
  
        // arrays required to color the
        // graph, store the parent of node
        int[] color = new int[N];
        int[] par = new int[N];
  
        // mark with unique numbers
        int[] mark = new int[N];
  
        // store the numbers of cycle
        cyclenumber = 0;
        int edges = 13;
  
        // call DFS to mark the cycles
        dfs_cycle(1, 0, color, mark, par);
  
        // function to print the cycles
        System.out.println(productLength(edges, mark));
    }
}
  
// This code is contributed by
// sanjeev2552

Python3

# Python3 program to find the
# product of lengths of cycle
from collections import defaultdict
  
# Function to mark the vertex with
# different colors for different cycles
def dfs_cycle(u, p, color, mark, par):
  
    global cyclenumber
      
    # already (completely) visited vertex.
    if color[u] == 2
        return
  
    # seen vertex, but was not completely 
    # visited -> cycle detected.
    # backtrack based on parents to find
    # the complete cycle.
    if color[u] == 1
  
        cyclenumber += 1
        cur = p
        mark[cur] = cyclenumber
  
        # backtrack the vertex which are
        # in the current cycle thats found
        while cur != u: 
            cur = par[cur]
            mark[cur] = cyclenumber
          
        return
      
    par[u] = p
  
    # partially visited.
    color[u] = 1
  
    # simple dfs on graph
    for v in graph[u]: 
  
        # if it has not been visited previously
        if v == par[u]: 
            continue
          
        dfs_cycle(v, u, color, mark, par)
      
    # completely visited.
    color[u] = 2
  
# add the edges to the graph
def addEdge(u, v):
  
    graph[u].append(v)
    graph[v].append(u)
  
# Function to print the cycles
def productLength(edges, mark, cyclenumber):
  
    mp = defaultdict(lambda:0)
  
    # push the edges that into the
    # cycle adjacency list
    for i in range(1, edges+1): 
        if mark[i] != 0:
            mp[mark[i]] += 1
      
    cnt = 1
  
    # prodcut all the length of cycles
    for i in range(1, cyclenumber + 1): 
        cnt = cnt * mp[i]
      
    if cyclenumber == 0:
        cnt = 0
  
    return cnt
  
# Driver Code
if __name__ == "__main__":

РЕКОМЕНДУЕМЫЕ СТАТЬИ