Пифагоров Триплет с заданной суммой

Опубликовано: 17 Января, 2022

Триплет Пифагора - это набор натуральных чисел, таких что a <b <c, для которого a ^ 2 + b ^ 2 = c ^ 2 . Например, 3 ^ 2 + 4 ^ 2 = 5 ^ 2.
Дано число n, найдите триплет Пифагора с суммой, как задано n.
Примеры :

 Ввод: n = 12
Выход: 3, 4, 5
Обратите внимание, что 3, 4 и 5 - это триплет Пифагора.
с суммой равной 12.

Ввод: n = 4.
Выход: без триплета
Пифагорова триплета не существует
с суммой равной 4.

Рекомендуется: сначала попробуйте свой подход в {IDE}, прежде чем переходить к решению.

A simple solution is to run three nested loops to generate all possible triplets and for every triplet, check if it is a Pythagorean Triplet and has given sum. Time complexity of this solution is O(n3).
An efficient solution is to run two loops, where first loop runs from i = 1 to n/3, second loop runs from j = i+1 to n/2. In second loop, we check if (n – i – j) is equal to i * i + j * j.
 

C++

// C++ program to find Pythagorean
// Triplet of given sum.
#include <bits/stdc++.h>
using namespace std;
 
void pythagoreanTriplet(int n)
{
    // Considering triplets in
    // sorted order. The value
    // of first element in sorted
    // triplet can be at-most n/3.
    for (int i = 1; i <= n / 3; i++)
    {
         
        // The value of second
        // element must be less
        // than equal to n/2
        for (int j = i + 1; j <= n / 2; j++)
        {
            int k = n - i - j;
            if (i * i + j * j == k * k)
            {
                cout << i << ", "
                     << j << ", "
                     << k;
                return;
            }
        }
    }
 
    cout << "No Triplet";
}
 
// Driver Code
int main()
{
    int n = 12;
    pythagoreanTriplet(n);
    return 0;
}

Java

// Java program to find Pythagorean 
// Triplet of given sum.
class GFG
{
    static void pythagoreanTriplet(int n)
    {
         
        // Considering triplets in
        // sorted order. The value
        // of first element in sorted
        // triplet can be at-most n/3.
        for (int i = 1; i <= n / 3; i++)
        {
             
            // The value of second element
            // must be less than equal to n/2
            for (int j = i + 1; j <= n / 2; j++)
            {
                int k = n - i - j;
                if (i * i + j * j == k * k)
                {
                    System.out.print(i + ", "+
                                j + ", " + k);
                    return;
                }
            }
        }
     
        System.out.print("No Triplet");
    }
     
    // Driver Code
    public static void main(String arg[])
    {
        int n = 12;
         
        pythagoreanTriplet(n);
    }
}
 
// This code is contributed by Anant Agarwal.

Python3

# Python3 program to find
# Pythagorean Triplet of
# given sum.
 
def pythagoreanTriplet(n):
 
    # Considering triplets in
    # sorted order. The value
    # of first element in sorted
    # triplet can be at-most n/3.
    for i in range(1, int(n / 3) + 1):
         
        # The value of second element
        # must be less than equal to n/2
        for j in range(i + 1,
                       int(n / 2) + 1):
 
            k = n - i - j
            if (i * i + j * j == k * k):
                print(i, ", ", j, ", ",
                               k, sep = "")
                return
     
    print("No Triplet")
     
# Driver Code
n = 12
pythagoreanTriplet(n)
 
# This code is contributed
# by Smitha Dinesh Semwal

C#

// C# program to find 
// Pythagorean Triplet
// of given sum.
using System;
 
class GFG
{
    static void pythagoreanTriplet(int n)
    {
         
        // Considering triplets in
        // sorted order. The value
        // of first element in sorted
        // triplet can be at-most n/3.
        for (int i = 1; i <= n / 3; i++)
        {
             
            // The value of second element
            // must be less than equal to n/2
            for (int j = i + 1;
                     j <= n / 2; j++)
            {
                int k = n - i - j;
                if (i * i + j * j == k * k)
                {
                    Console.Write(i + ", "+
                                  j + ", " + k);
                    return;
                }
            }
        }
     
        Console.Write("No Triplet");
    }
     
    // Driver Code
    public static void Main()
    {
        int n = 12;
         
        pythagoreanTriplet(n);
    }
}
 
// This code is contributed by Vt_m.

PHP

<?php
// PHP program to find 
// Pythagorean Triplet
// of given sum.
 
function pythagoreanTriplet($n)
{
    // Considering triplets in
    // sorted order. The value
    // of first element in sorted
    // triplet can be at-most n/3.
    for ( $i = 1; $i <= $n / 3; $i++)
    {
         
        // The value of second
        // element must be less
        // than equal to n/2
        for ( $j = $i + 1; $j <= $n / 2; $j++)
        {
            $k = $n - $i - $j;
            if ($i * $i + $j * $j == $k * $k)
            {
                echo $i , ", ", $j ,", ", $k;
                return;
            }
        }
    }
 
    echo "No Triplet";
}
 
// Driver Code
$n = 12;
pythagoreanTriplet($n);
 
// This code is contributed by anuj_67.
?>

Javascript

<script>
 
// JavaScript program to find Pythagorean 
// Triplet of given sum.
 
    function pythagoreanTriplet(n)
    {
           
        // Considering triplets in
        // sorted order. The value
        // of first element in sorted
        // triplet can be at-most n/3.
        for (let i = 1; i <= n / 3; i++)
        {
               
            // The value of second element
            // must be less than equal to n/2
            for (let j = i + 1; j <= n / 2; j++)
            {
                let k = n - i - j;
                if (i * i + j * j == k * k)
                {
                    document.write(i + ", "+
                                j + ", " + k);
                    return;
                }
            }
        }
       
        document.write("No Triplet");
    }
 
// Driver Code
        let n = 12;
        pythagoreanTriplet(n);
 
// This code is contributed by avijitmondal1998.
</script>
Output : 
3, 4, 5

 

Вниманию читателя! Не прекращайте учиться сейчас. Получите все важные математические концепции для соревновательного программирования с курсом Essential Maths for CP по доступной для студентов цене. Чтобы завершить подготовку от изучения языка к DS Algo и многому другому, см. Полный курс подготовки к собеседованию .

РЕКОМЕНДУЕМЫЕ СТАТЬИ