Matplotlib.axes.Axes.get_legend_handles_labels () в Python
Matplotlib - это библиотека на Python, которая является численно-математическим расширением библиотеки NumPy. Класс Axes содержит большинство элементов фигуры: Axis, Tick, Line2D, Text, Polygon и т. Д. И задает систему координат. А экземпляры Axes поддерживают обратные вызовы через атрибут callbacks.
Функция matplotlib.axes.Axes.get_legend_handles_labels ()
Функция Axes.get_legend_handles_labels () в модуле осей библиотеки matplotlib используется для возврата дескрипторов и меток для легенды.
Syntax: Axes.get_legend_handles_labels(self)
Parameters: This method does not accepts any parameters.
Return: This function return the handles and labels for legend.
Примеры ниже иллюстрируют функцию matplotlib.axes.Axes.get_legend_handles_labels () в matplotlib.axes:
Example 1:
# Implementation of matplotlib function import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots() ax.plot([ 1 , 6 , 3 , 8 , 34 , 13 , 56 , 67 ], color = "green" ) h, l = ax.get_legend_handles_labels() # print(h, l) text = "Legend is present" if h = = []: text = "No legend present" else : text + = "and labels are : " + str (l) ax.text( 2.5 , 60 , text, fontweight = "bold" ) fig.suptitle("matplotlib.axes.Axes.get_legend_handles_labels() function Example
", fontweight = "bold" ) fig.canvas.draw() plt.show() |
Выход:
Example 2:
# Implementation of matplotlib function import numpy as np np.random.seed( 19680801 ) import matplotlib.pyplot as plt fig, ax = plt.subplots() for color in [ "tab:green" , "tab:blue" , "tab:orange" ]: n = 70 x, y = np.random.rand( 2 , n) scale = 1000.0 * np.random.rand(n) ax.scatter(x, y, c = color, s = scale, label = color, alpha = 0.35 ) ax.legend() ax.grid( True ) h, l = ax.get_legend_handles_labels() print (h, l) text = " Legend is present" if h = = []: text = "No legend present" else : text + = " and labels are :
" + str (l) ax.text( 0.15 , 0.45 , text, fontweight = "bold" ) fig.suptitle("matplotlib.axes.Axes.get_legend_handles_labels() function Example
", fontweight = "bold" ) fig.canvas.draw() plt.show() |
Выход:
Внимание компьютерщик! Укрепите свои основы с помощью базового курса программирования Python и изучите основы.
Для начала подготовьтесь к собеседованию. Расширьте свои концепции структур данных с помощью курса Python DS. А чтобы начать свое путешествие по машинному обучению, присоединяйтесь к курсу Машинное обучение - базовый уровень.