Функция plotly.express.scatter_geo () в Python

Опубликовано: 8 Апреля, 2022

Библиотека Plotly Python может быть очень полезной для визуализации данных и понимания данных просто и легко. Объекты графического представления представляют собой высокоуровневый интерфейс для построения графиков, который прост в использовании.

функция plotly.express.scatter_geo ()

Эта функция используется для нанесения географических данных на карты.

Syntax: plotly.express.scatter_geo(data_frame=None, lat=None, lon=None, locations=None, locationmode=None, color=None, text=None, hover_name=None, hover_data=None, custom_data=None, size=None, title=None, template=None, width=None, height=None)

Parameters:

data_frame: DataFrame or array-like or dict needs to be passed for column names.

lat: This parameter is used to position marks according to latitude on a map.

lon: This parameter is used to position marks according to longitude on a map.

locations: This parameter is interpreted according to locationmode and mapped to longitude/latitude.

locationmode: This parameter determines the set of locations used to match entries in locations to regions on the map.

color: This parameters assign color to marks.

size: This parameter is used to assign mark sizes. It is either a name of a column in data_frame, or a pandas Series or array_like object.

title: This parameter sets the title of the figure.

width: This parameter sets the width of the figure



height: This parameter sets the height of the figure.

Example 1:

Python3

import plotly.express as px
  
  
df = px.data.gapminder().query("year == 2007")
  
plot = px.scatter_geo(df, locations="iso_alpha")
plot.show()

Выход:

Example 2: Using the size and color argument

Python3

import plotly.express as px
  
  
df = px.data.gapminder().query("year == 2007")
  
plot = px.scatter_geo(df, locations="iso_alpha",
                      size="gdpPercap",
                      color = "country")
plot.show()

Выход:

Внимание компьютерщик! Укрепите свои основы с помощью базового курса программирования Python и изучите основы.

Для начала подготовьтесь к собеседованию. Расширьте свои концепции структур данных с помощью курса Python DS. А чтобы начать свое путешествие по машинному обучению, присоединяйтесь к курсу Машинное обучение - базовый уровень.